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Order-disorder transition in the spinless fermion model 

Janusz Jedrzejewski 
Institute of Theoretical Physics, University of Wroclaw, Cybulskiego 36,50-205 Wroctaw. 
Poland 
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Abstract. The spinless fermion model used by some authors for a description of a metal- 
insulator transition is proven to develop a long-range order at sufficiently low temperatures 
if the dimension of the underlying simple cubic lattice U 2 2. The Hamiltonian of the model 
consists of the lattice kinetic energy term and a nearest-neighbour repulsion term. The 
method used in the proof is that of Frohlich and Lieb, which combines a Peierls argument 
with chessboard estimates. For U P 3 infrared bounds are applied to find a simple expression 
for the critical temperature lower bound. 

1. Introduction 

The spinless fermion model is the simplest non-trivial model one can construct for 
spinless fermions on a lattice, possessing kinetic energy. Its second-quantised Hamil- 
tonian reads 

where c:, c, stand for fermion creation and annihilation operators at a site i of a lattice 
A respectively, ni = cTci and 2.c,n denotes summation over nearest-neighbour pairs, 
each pair being counted once. If the chemical potential p = po, where po = zW/2 and 
z is the number of nearest neighbours, Hamiltonian (1) is invariant under the following 
canonical transformation called the hole-particle transformation ( HPT): 

ci" + (-l)'i'ci, i = (i', i 2 , .  . . , i") E A, l i l = l i ' + i 2 + .  . . + i " l .  (2) 

Therefore in the case p = po, the mean number of particles per site p = (IAl-'ZieA ni), 
where (. . .) is the Gibbs state corresponding to a system placed on a finite lattice A 
with number of sites /AI whose energy is given by Hamiltonian ( l) ,  is equal to 4 
independently of temperature. 

In the one-dimensional case, for p = po the model has received considerable 
attention in the literature, mainly due to its thermodynamic equivalence to the 
anisotropic Heisenberg chain (Des Cloizeaux 1966, Wolf and Zittartz 1981, Lorenz 
1980). 

Kohn (1967) used the model for a description of a metal-insulator transition in 
the framework of a Hartree-Fock approximation. With the same purpose the model 
was studied by Cullen and Callen (1970, 1973) and Lorenz and Ihle (1972), in a 
Hartree-Fock approximation. Lorenz (1980) proposed the model for a study of an 
order-disorder transition in superionic conductors, using a two-site cluster approxi- 
mation, 
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The common feature of the results of the last three quoted references is that in 
the case of the simple cubic lattice, for W > 0 (repulsion of particles) and p = Po, 
below some critical temperature the system is in the so-called charge-ordered phase, 
i.e. there is a non-zero difference between mean occupation of odd and even sublattices. 
According to Hartree-Fock type approximations the above transition to a charge- 
ordered phase occurs for any value of the ratio it/ WI, while cluster approximations 
predict that it vanishes if It /  Wl is larger than some critical value (Lorenz 1982). 

The purpose of this paper is to prove that system ( l ) ,  with W > 0, p = po and A 
the simple cubic lattice, undergoes an order-disorder transition at some critical tem- 
perature if the ratio It/ WI is sufficiently small and dimensions v a 2. Specifically we 
prove that under the above conditions, at sufficiently low temperatures, there is 
long-range order corresponding to the charge ordering. The result is achieved with 
the help of a rigorous method developed by Frohlich and Lieb (1978), which is based 
on a version of the Peierls argument and the notion of reflection positivity of the Gibbs 
state generated by the system's Hamiltonian. 

Finally, in order to obtain simple expressions for lower bounds of the critical 
temperature and the critical value of the ratio I t /  WI, we use the method of infrared 
bounds (Frohlich et a1 1978). These results hold in dimensions v 3 3. 

2. Some properties of the Hamiltonian, reflection positivity 

First, we shall transform H, to an equivalent form, more convenient for our purposes, 

H,=$( w(HE,(~) +constant, (3) 

HZ,(a)=-a  2 (c:c,+cTc,)+ 2 [(2n,-l)*(2n,-1)I2,  (4) 
( 1 4  ('.I), 

I €  2 I €  2 

where a = 8t / l  WI, the + sign corresponds to repulsion and the - sign to attraction of 
particles, and A' denotes the odd sublattice of A,  which is assumed to be the simple 
cubic lattice wrapped on a torus ( v  = 2). We also assume that t > 0; however, this is 
not a restriction, since there is a canonical transformation which changes the sign of 
the kinetic energy but leaves the interaction term unchanged, c, + exp(i/xlrr)c,, x E A. 
In the following we shall study the case of repulsion, i.e. the system given by H i o .  
We apply to H z ,  the HPT restricted to the even sublattice: c: -+ c,, i E A', in order to 
get a unitarily equivalent Hamiltonian f i ( a ) :  

f i ( a ) = - a  c ( c : c~+c ,c , )+  [(2n1-l)-(2n,-1)]2. ( 5 )  
(I,,), (I,,), 

I €  i LE 1 

The purpose of the rest of this section is to explain and prove the reflection positivity 
property of the Gibbs state generated by Hamiltonian (5). The proof is based on that 
by Frohlich (Frohlich et a1 1980, model 5.6) and is presented here to make the paper 
more self-contained. 

We shall assume that A c Z2 can be parametrised as follows: 

A = { Z 2 3 ( i 1 ,  i 2 ) :  O s  i 1 < 4 M - 1 , 0 s  i 2 s 4 M - 1 , M =  1 , 2 , .  . .}. (6) 

Because of periodic boundary conditions coordinates are calculated modulo 4 M  onto 
the set 0, 1, . . . , 4 M -  1. Consider pairs of lines parallel to the second coordinate axis, 
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bisecting the bonds between two adjacent lattice lines: 

L; = {(x +:, y):  y E R } ,  

L: = { ( x + 2 M + i ,  y ) :  y E R } ,  x = O ,  1 , .  . . ,4M-1. (7)  

With each pair L,, L: we associate a partition of A into two subsets A:, .I;: 

A: = {Z' 3 ( i ' ,  i ' ):  x +  1 G i ' s x + 2 M ,  0 6  i's 4M- l}, 

A; = {Z' 3 ( i ' ,  i '): i' < x or i' 3 x + 2 M +  1 , O s  i2s 4M-  I}, (8) 

and a reflection R,: A-, A ,  

R,(il,  i 2 ) = ( 2 x + l - i ' ,  i'). (9) 

Clearly we have that 

As is well known, operators c:, c,, i E A obeying canonical anticommutation relations 
cfc, + c,cf = SI,,, cIc, + c,cI = 0 have a real matrix representation on CM, M = 2". In 
this representation matrices of unitary operators (-1)"~ are also real. The set {c:, c,: i E 

A} of matrices generates the real matrix algebra "U of local observables. With each 
partition of A it is possible to associate a partition of "U into two subalgebras .U:, "U;, 
such that "U = %:U "U;, ["U:, "U,] = O  and a real morphism O x :  "U;+ "U: such that 
8,%2l; = %:. This is done in the following way. Let 

a, = c, if i E A:, 

a, = ( - l )N+cl  if iE A;, N + =  ni. 
I € ' \ ;  

Then "U: is the algebra generated by af,  a,, i E 'i: and "U; is the algebra generated 
by af .  a,, i~ A;. The morphism 8, is given by 

where the trace is taken over U?' and - f i ( a )  has the form 

k 

-A(a)= B + O , ( B ) +  1 Cl8,(C,), B, C, E Q;. (14) 
, = l  

Equations (13) and (14) imply that the Gibbs state (. . .)- = 
Tr [. . . exp(-Pfi(a))]/Tr exp(-pA( a ) )  has the reflection positivity property, i.e. 
(A8,(A))- 3 0 for all A E %;. 

Obviously all the above reasoning can be repeated for pairs of lines parallel to the 
first coordinate axis. By the general theory of reflection positivity we can use in our 
considerations chessboard estimates as well as infrared bounds (Frohlich et al 1978). 
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3. The problem and its solution 

Here we shall specify the problem, recall for completeness the main steps of the method 
which we shall use, and find necessary estimates. Let 

By invariance of H ,  under the HPT, (m,,) = 0. Our  aim is to prove that in the  
thermodynamic limit, denoted limATZ2, the staggered long-range order limAtz2 (m,:) of 
the system HL, is non-zero at  sufficiently low temperatures. An equivalent statement 
is 

lim (k:)- > 0, k 4 = l A 1 - '  m, (16) 
,ztz2 I €  .\ 

for p > p,, where pc is the inverse critical temperature. (16) is implied by the inequality 

(mom,)- 3 K ,  K > O  (17) 

uniformly in j and A,  for p > pc. Let P:, P; denote spectral projections of m, t o  the 
eigenvalues 1 and -1 respectively. Then m, = P:- P; and 

(mom,)- = 1 -4(P3,)-. (18)  

Therefore we are  left with proving that (P:PJ- < a  uniformly in j and A for sufficiently 
large p. 

In our  reasoning we stick to the method of Frohlich and Lieb (1978).  An upper 
bound for (P:PJ- uniform in j and A is obtained in the following sequence of steps. 

(19) 

where a contour y is a family of nearest-neighbour pairs {(i l ,  jl), . . . , ( i k ,  j k ) :  k = 
4 , 6 , .  . .}which divides A into two disjoint subsets, A m (  y )  2 { i l , .  . . , ik ,  m }  and A,(  y )  2 A 
{il,. . . , j k ,  a } ,  such +hat Am(  y )  U A,,( y )  = A. 

(b)  A chessboard estimate 

where 

and IyI is the length of y, i.e. the number of nearest-neighbour pairs in y. (20) is 
obtained by the repeated application of the Schwartz inequality: (AO,(B))? s 
(A8 , (A) ) - (B8 , (B) ) -  for A ,  B E  %i, which follows from the reflection positivity 
property of the state (. . .)-, for all 8, described in § 2. Note that P ,  is a spectral 
projector of A(0) = E([,,) [(2ni - 1)  - ( 2 9  - 1)12 onto the one-dimensional eigensub- 
space whose eigenvalue 2lAl is greater than eo(0), the ground state energy of H ( 0 )  
(eo(0) = 0). 

(c) Peierls argument. If for large enough A,  (P.,)l'I'l < 6, then 
w 

(PLP;)- s 1 2k32k-2((P,)'li'1)k. (22) 
k = 2  
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Hence ( P Z P J -  < a  uniformly in m, n and A if (P,)L”” is sufficiently small uniformly 
in A. 

(d) For any E > 0 there exists 8 < a,  < 1 and pc < CO such that for a < a,  and p > p,, 
(~,,)L’l’l < E uniformly in A. 

Let {e,} denote the set of eigenvalues of A(a) and choose some A > O ;  then 

where Z(p, a )  =Tr  exp(-@(a)) and eo(a)  denotes the ground state energy of f i ( a ) .  
If a were zero we could make the first term of (23) vanish identically by choosing 

A sufficiently small, while the second term of (23) could be estimated as follows: 

In the case a Z 0, (24) holds as well, but the first term of (23) does not vanish identically 
since [P.A, A(a)] # 0 so P,, can have non-zero matrix elements in any eigenstate of 
f i ( a ) .  However, one can expect that if ei are close to eo(0), then when a.?.= 
A(a)-A(O) is small with respect to A(0) in a suitable sense, the matrix elements 
(e,lP,lei) are small. This idea is made mathematically rigorous by the following theorem, 
called by Frohlich and Lieb ( 1978) the principle of exponential localisation. 

Theorem (Fr6hlich and Lieb). Let A and B be self-adjoint operators on a Hilbert 
space 2 such that 

( i )  AZO, (25) 

(ii) * B S E A  wi thOSE<l .  (26) 

Let $ be a normalised eigenvector of A + B: 

( A  + B)$ = A$. (27) 

Choose some p > A s 0 such that U =  ~ p ( p  - A)-’ < 1. Let M,, = 92’ be the subspace of 
2f generated by all eigenvectors of A corresponding to eigenvalues e s  
p ( ( A -  h)lM, > 0) and let P be the projector onto the subspace Mp= M, such that 
Q E M p  if and only if 

(iii) [B(A-h)-’]’cp E M,, (28) 

(4IPI$,) U Z d .  (29) 

f o r j = 0 , 1 ,  . . . ,  d - l , w i t h d a l .  Then 

Now, according to (A1.4) (see appendix 1 )  

A(0) - eo( 1 ) 3 0 (30) 
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and by definition of e d l )  

-I.+ fi(0) - eo(l)  3 0 or - i. s fi(0) - eo( 1 1. (31) 

Since there exists a unitary transformation under which T +  -T we also have 

- T +  A(o) - eo(l)  2 0 or i . s f i ( 0 ) - e o ( l ) .  (32) 

Therefore, by (30), A = A(0) - eo( l )  2 0 and B = -aT satisfies the inequality *I3 s EA 
with & = a  by (31) and (32), which implies that A + B = f i ( a ) - e o ( l ) z O  for a < l .  
The first term of (23) can be estimated by a single matrix element of Pi: 

e,<edO)+Al21 c exp(-pel)(el~P, le l ) /~ e,  exp(-pel) 

for some e,< eo(0) +AIAI, i.e. we are interested in an upper bound for (e,lP,,Je,). This 
suggests the identification IC, = leql), P = Pi. Hence A has to fulfil the inequality 

A s eo(0) - eo(l)  +Ai AI = -eo(l )  +AI Al. (34) 

So we choose p = -eo(l )  + n A l A  with n > 1. 
In appendix 2 we find the upper bound for U 

for sufficiently small a and the lower bound for d 

d a E ( ( 1 -  q)/ I ( / 4 ) 2  1 (36) 

6 < 1, for sufficiently large '4, where 6, 7 are parameters which satisfy relations 0 
0 < 7 < 1 ,  A = P - ' ,  n=2qpS .  (24), (29), (33) imply that 

(PJ!?' s 2 exp(-p'-') + { a l l  + 1/77 + ~ ( p - ~ ) ] } " - " " ~  (37) 

for sufficiently small (Y and sufficiently large I. This proves statement (d) and ends 
the proof of the existence of long-range order in the system HL,. 

Sime the series (22) has the sum equal to 2q2(2-4)/(1 -q) ' ,  where q = 9(P,)'/I'l< 
1, a,  and p, can be estimated from the equation 

q2(2-q)/(  1 - q ) *  = $, (38) 

where 4 stands for the upper bound of 4 which follows from (37) by an optimisation 
of the choice of 6 and 77. This perhaps can be achieved numerically. 

The above proof can be generalised to higher dimensions, as usual in methods 
based on a Peierls argument. However, in dimensions v 2 3 a simpler proof by the 
method of infrared bounds is available (Dyson et a1 1978). It gives simple analytic 
expressions for lower bounds for the critical temperature and a,; this is carried out 
in 9 4. 
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4. Infrared bounds for v 2 3 

For a vector k in the first Brillouin zone of A,  let 

m( k )  = lAl-”2 c m, exp ikj. 
j s  A 

(39) 

Since (. . .)- has the reflection positivity property, the following infrared bound holds 
(Frohlich et a1 1978): 

( m ( k ) ,  m(-k)) s ( 2 P E ( k ) ) - ’ ,  (40) 

where E ( k )  = X r = l  (1-cos k,)  (the lattice constant is assumed to be 1) and (A,  B ) =  
p- ’  J’E d s (exp( s f i ( a ) )A  exp(-sf i (a))B);  is the Duhamel two-point function (Dyson 
et al 1978). (40) implies the upper bound for the correlation function ( m ( k ) m ( - k ) ) -  
(Falk and Bruch 1969): 

(m(k)m(-k)) -s t (CkBk)l”Coth $p(ck/Bk)1’2, (41) 

where Ck and Bk are such that ( [ m ( - k ) ,  [ f i ( a ) ,  m ( k ) ] ] ) - ~  Ck and ( m ( k ) ,  m ( - k ) ) s  
One finds Bk = ( 2 E ( k ) ) - ’  and ck = 32av. Thus 

( m (  k )  m( - k))... c 2(  a./ E (  k ) ) 1 ’ 2  coth 4p (  avE( k ) )  ‘ I 2 .  (42) 

and by the argument of Dyson et a1 (1978) 

Iim (m,m,)= 3 ( m i ) ;  d”k 2 ( a ~ / E ( k ) ) ~ ’ ~ c o t h 4 / 3 ( a v E ( k ) ) ~ ’ ~ ,  (43) 
l ~ - l l + =  

where (. . .)x denotes the thermodynamic limit of states (. . .)-, and i i - j l  is the distance 
between i and j .  It is well known (Ruelle 1969) that if liml,-ll+co (mlm,)=> 0 or  (15) 
holds, then the state (. . .)= does not have the cluster property and at least two pure 
phases exist. Since (mi) -  = 1 and coth x s 1 + l /x ,  we find 

(44) I’-II“ lim (mZm,)=z 1 - ~ ( ~ v ) ” * c , , ~ - ( ~ P ) - ’ c ~ ,  
where C, = ( 2 7 7 - ”  J’Tr d”k E - ‘ ( k ) ,  r = 1,;. (44) gives the following lower bound for 
a,  and upper bound for p,: 

a c 3  (4c:,2v)-’, p , s ; c , ( l -  2(  av)’ /2c, ,2)-1.  (45) 

Appendix 1. Upper and lower bounds for the ground state energy e o ( u )  of f i ( u )  

By the Peierls-Bogolyubov inequality 

Tr  e x p ( - P f i W  3 c exP(-p(alfi(a)la>), ( A l . l )  

where { la ) }  stands for  a set of orthonormal vectors of X. Let { l a ) }  be all eigenvectors 
of the occupation number operators n,, i E A.  Then 

10) 

c exp(-P(alfi(a)Ia))  = c exp(-p(alfi(o)la)) 
la) la)  

= T r  exp(-pfi(O)). (A1.2) 
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Hence 

Tr exp(-pf i (a))  3 T r  exp(-pfi(O)). 

The last inequality implies the following upper bound for e o ( a ) :  

eo(.) s edO). 
Clearly eo(0 )  = 0. To get a lower bound for eo(cY) note that 

(-fi(cY))-s CY(T)-s CYl(T)-l, 

(A(a))-Z -a \ (T) - Iz  -cYv~AI 

and 

eo(.) 3 -cyvlAl, 

where we used the Schwartz inequality to estimate I( T)-l. 

(A1.3) 

(A1.4) 

(A1.5) 

(A1.6) 

(A1.7) 

Appendix 2. Upper bound for U and lower bound for d 

From (34), (A1.7) and the definition of p we get the inequalities 

A s (2+A) lAl ,  p (2+  nA)IA (A2.1) 

which imply the following upper bound for U: 

2 + A  
n- l )A 

(A2.2) 

In our case P,, is the projector onto a definite configuration, i.e. M p  is a one-dimensional 
subspace of X corresponding to the eigenvalue 21A1-eo(l) of A (each bond +- or 
-+ contributes 4 and there are lAl/2 of such bonds). To ensure that M p  c M, we 
require that 

(A2.3) 21A1 - e o ( l ) - p  = ( 2 -  nA)lA/ > 0; 

hence we get the constraint 

2- nA> 0. (A2.4) 

Next we have to find a lower bound for d. Since B is of the form -CY&,,, (cfcT+ cjc,),  
each application of B to an eigenstate of A gives another eigenstate of A with two 
particles on nearest-neighbour sites more or less. If in the new state the number of 
nearest-neighbour sites such that one of them is occupied and the other is empty (+- 
or -+ bonds) is smaller by one, its A-energy is smaller by 4. Therefore, finding a 
lower bound for d amounts to estimation of the minimal number of successive 
applications of B to a state from Mp, which lower the energy 21AI -e,( 1) to the energy 
p = - e J l )  + nAl;il. In the index ( i ' ,  i 2 )  in (21), let i' denote columns. Then it is clear 
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that the number of steps in the above process is minimal if we remove +-, -+ 
horizontal bonds, for example by creation of particles at horizontal pairs of empty 
sites. Such a step lowers the A-energy by 8. Thus 

d 5 E ( ( 2 -  nA)lAl /8) ,  (A2.5) 

where for a real x, E ( x )  denotes the largest integer which does not exceed x. Finally 
if we set A = n = 277p5 for some 0 < 6 < 1 and 0 < 77 < 1 then all the constraints 
are satisfied: 

(A2.6) (T s (U( 1 + 1/77 +o(p-c)) < 1 

for sufficiently small (Y and 

for sufficiently large A. 
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